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Fig. 1. Dictionary Fields factorize a signal into a coefficient field c(x) and basis field b
(
𝜸 (x)

)
(top-center), each of which is represented by one out of many

possible field representations (bottom-left). The basis field allows for spatial repetition via a suitably chosen coordinate transformation 𝜸 (x) (top-left). The
resulting Hadamard product field c(x) ◦ b

(
𝜸 (x)

)
is passed to a projection function (e.g., MLP) which maps it to the signal’s output domain (bottom-right).

We present Dictionary Fields, a novel neural representation which decom-
poses a signal into a product of factors, each represented by a classical or
neural field representation, operating on transformed input coordinates.
More specifically, we factorize a signal into a coefficient field and a basis
field, and exploit periodic coordinate transformations to apply the same
basis functions across multiple locations and scales. Our experiments show
that Dictionary Fields lead to improvements in approximation quality, com-
pactness, and training time when compared to previous fast reconstruction
methods. Experimentally, our representation achieves better image approx-
imation quality on 2D image regression tasks, higher geometric quality
when reconstructing 3D signed distance fields, and higher compactness for
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radiance field reconstruction tasks. Furthermore, Dictionary Fields enable
generalization to unseen images/3D scenes by sharing bases across signals
during training which greatly benefits use cases such as image regression
from partial observations and few-shot radiance field reconstruction. Our
code is available at https://apchenstu.github.io/FactorFields/.
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1 INTRODUCTION
Effectively representing multi-dimensional digital content – like
2D images or 3D geometry and appearance – is critical for com-
puter graphics and vision applications. These digital signals are
traditionally represented discretely as pixels, voxels, textures, or
polygons. Recently, significant headway has been made in devel-
oping advanced neural representations [Chen et al. 2022; Milden-
hall et al. 2020; Müller et al. 2022; Sitzmann et al. 2020; Sun et al.
2022], which demonstrated superiority in modeling accuracy and
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efficiency over traditional representations for different image synthe-
sis and scene reconstruction applications. Notably, TensoRF [Chen
et al. 2022] introduced a tensor factorization-based representation,
which can be seen as a representation of two Vector-Matrix or three
CANDECOMP-PARAFAC decomposition factors with axis-aligned
orthogonal 2D and 1D projections as transformations. While Ten-
soRF demonstrated the potential of multi-factor representations, it
is naturally limited to simple orthogonal transformations.

Motivated by this observation, we proposeDictionary Fields (Fig. 1),
a two-factor representation that is composed of (1) a basis field fac-
tor with periodic transformation to model the commonalities of
patterns that are shared across the entire signal domain and (2) a
coefficient field factor to express localized spatially-varying features
in the signal. The target signal is then regressed from the factor
product via a learned projection function (e.g., MLP). The combi-
nation of both factors allows for an efficient representation of the
global and local properties of the signal. Compared to methods that
model only a single factor (e.g., NeRF, Instant-NGP, DVGO, Plenox-
els), jointly modeling two factors (basis and coefficients) leads to
superior quality and enables compact and fast reconstruction, as we
demonstrate on various downstream tasks.
We conduct a rich set of ablation experiments over the choice

of basis/coefficient functions and basis transformations. In partic-
ular, we evaluate Dictionary Fields against various variants and
baselines on three classical signal representation tasks: 2D image
regression, 3D SDF geometry reconstruction, and radiance field
reconstruction for novel view synthesis. We demonstrate that our
factorized multi-scale representation is able to achieve state-of-the-
art reconstruction results that are better or on par with previous
methods, while achieving superior modeling efficiency. For instance,
compared to Instant-NGP our method leads to better reconstruction
and rendering quality, while effectively halving the total number of
model parameters (capacity) for SDF and radiance field reconstruc-
tion, demonstrating its superior accuracy and efficiency.
Moreover, in contrast to recent neural representations that are

designed for purely per-scene optimization, our factorized repre-
sentation framework is able to learn basis functions across different
scenes. As shown in preliminary experiments, this enables learn-
ing across-scene bases from multiple 2D images or 3D radiance
fields, leading to signal representations that generalize and hence
improve reconstruction results from sparse observations such as in
the few-shot radiance reconstruction setting. In summary,

• We propose Dictionary Fields, a new representation that
factorizes a signal into coefficient and basis factors which
allows for exploiting similar signatures spatially and across
scales.

• Our model can be trained jointly onmultiple signals, recov-
ering general basis functions that allow for reconstructing
parts of a signal from sparse or weak observations.

• We present thorough experiments and systematic ablation
studies that demonstrate improved performance (accuracy,
runtime, memory), and shed light on the performance im-
provements in three pre-scene optimization and two general-
ization tasks.

2 RELATED WORK
We now introduce standard dictionary factorization techniques and
recent advances in neural fields.

Dictionary Factorization. Representing data using a smaller set of
basis functions has been well studied for decades, from theory [Lee
and Seung 2000; Olshausen and Field 1997] to diverse applications
in computer vision and graphics, such as data compression, image
inpainting and classification [de Queiroz and Chou 2016; Elad et al.
2005; Yang et al. 2009]. Two popular decomposition techniques
in signal processing are transformation techniques and dictionary
learning. Transformation techniques, such as Discrete Cosine and
Wavelet transforms, have been widely used for decades [Ahmed et al.
1974; Grossmann and Morlet 1984]. They transform a signal into a
different domain where it can be easily represented by a smaller set
of coefficients. In contrast, dictionary learning aims to learn a set of
basis functions that can represent the input signals sparsely [Heide
et al. 2015; Mairal et al. 2009; Olshausen and Field 1996; Rubinstein
et al. 2008; Wright et al. 2009; Yang et al. 2010]. By finding a linear
combination of only a few basis functions, dictionary learning is
able to achieve efficient representations that capture the essential
structure of the signals.

In recent years, several attempts have been made to improve the
performance of signal processing tasks by combining standard dic-
tionary factorization techniques with neural networks. For instance,
[Fu et al. 2019; Zheng et al. 2021] combined convolutional neu-
ral networks with dictionary factorization for image compression
and denoising. In contrast, our work does not address a decompo-
sition/compression problem, but a reconstruction problem based
on gradient descent, since the feature grid/tensor is unknown ini-
tially. Concurrently, [Huang et al. 2022; Wu et al. 2022] perform
frequency-wise decomposition using fast Fourier transformation
or sine activations. In our work, we utilize dictionary factorization
that decomposes a signal into a learned coefficient field and a basis
field for efficient and general signal representation.

Neural Fields. Recently, neural field representations have emerged
as a promising replacement for traditional representations in repre-
senting natural signals, such as 2D images, 3D geometry, 5D radi-
ance field. Seminal works Occupancy Networks [Mescheder et al.
2019], IMNet [Chen and Zhang 2019] and DeepSDF [Park et al. 2019]
propose to represent the 3D surface implicitly as the continuous
decision boundary of an MLP classifier or by regressing a signed
distance value, providing a continuous implicit 3D mapping thus
allows for the extraction of 3D meshes at any resolution. While
this representation is able to generate high-quality meshes, it fails
to model high-frequency signals, such as images due to the im-
plicit smoothness bias of MLPs. To address this issue, a number of
approaches based on positional encoding [Lindell et al. 2022; Milden-
hall et al. 2020; Shekarforoush et al. 2022; Tancik et al. 2020], trans-
form spatial coordinates to Fourier space with a set of sinusoidal
functions and then utilize an MLP to obtain the prediction. Simi-
larly, SIREN [Sitzmann et al. 2020] and MFN [Fathony et al. 2021]
propose to leverage periodic activation functions for implicit neural
representations, achieving promising complicated signal modeling
while preserving high-order gradients. To balance memorization
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(a) 1D Illustration of Eq. (2) (b) 2D Illustration of Eq. (3)

Fig. 2. Coefficient and Basis Factorization. (a) Choosing a (periodic)
coordinate transformation𝜸 (𝑥 ) allows for applying the same basis function
𝑏 (𝑥 ) at multiple spatial locations and scales. For clarity, we have chosen
constant coefficients c = 1 and a single shared Gaussian basis for this exam-
ple. (b) Composing multiple bases at different spatial resolutions with their
respective coefficients yields a powerful representation for signal 𝑠 (x) . In
this example we use a single (distinct) basis at each of the 3 levels. In prac-
tice, we use multiple learned bases and coefficient fields at each resolution.

and generalization, [Ramasinghe and Lucey 2021] propose to learn
a positional embedding based on the classic graph-Laplacian reg-
ularization. Though using the pure MLP to map coordinates to
the target signal domain provides global and compact modeling,
they require a long training time for local details recovery. Recent
works [Chen et al. 2022; Fridovich-Keil et al. 2022; Müller et al. 2022;
Sun et al. 2022; Takikawa et al. 2022] introduce grid embedding for
fast optimization and fine details recovery.
Neural fields have also been widely deployed as representation

for various other graphics and vision applications, such as novel
view synthesis [Aliev et al. 2019; Chen et al. 2022; Liu et al. 2020;
Lombardi et al. 2019; Mildenhall et al. 2020; Thies et al. 2019; Verbin
et al. 2022; Xu et al. 2022; Zhou et al. 2018], generative models [Chan
et al. 2022, 2021; Gao et al. 2022; Schwarz et al. 2020], 3D surface
reconstruction [Chabra et al. 2020; Hui et al. 2022; Jiang et al. 2020;
Kobayashi et al. 2022; Niemeyer et al. 2020; Wang et al. 2021; Yariv
et al. 2021; Yu et al. 2022], image processing [Chen et al. 2021a],
graphics asset modeling [Kuznetsov et al. 2021; Rainer et al. 2019;
Zhu et al. 2021], inverse rendering [Bi et al. 2020a,b; Boss et al.
2021a,b; Zhang and Ohn-Bar 2021; Zhang et al. 2022], dynamic scene
modeling [Fridovich-Keil et al. 2023; Li et al. 2021, 2020; Park et al.
2021; Pumarola et al. 2021; Ramasinghe et al. 2023; Song et al. 2023]
and scene understanding [Matthew et al. 2023; Peng et al. 2022].
Such applications may all directly benefit from the development of
new signal representations.

3 DICTIONARY FIELDS
We seek to compactly represent a continuous 𝑄-dimensional signal
s : R𝐷 → R𝑄 on a 𝐷-dimensional domain. We assume that signals
are not random, but structured and hence share similar signatures

within the same signal (spatially and across different scales) as
well as between different signals. In the following, we develop our
Dictionary Fields model step-by-step, starting from a standard basis
expansion.

Let us first consider a 1D signal 𝑠 (x) : R𝐷 → R. Using basis expan-
sion, we decompose 𝑠 (x) into a set of coefficients c = (𝑐1, . . . , 𝑐𝐾 )⊤
with 𝑐𝑘 ∈ R and basis functions b(x) = (𝑏1 (x), . . . , 𝑏𝐾 (x))⊤ with
𝑏𝑘 : R𝐷 → R:

𝑠 (x) = c⊤b(x) (1)
Note that we denote 𝑠 (x) as the true signal and 𝑠 (x) as its approxi-
mation.

Representing the signal 𝑠 (x) using a global set of basis functions
is inefficient as information cannot be shared spatially. We hence
generalize the above formulation by (i) exploiting a spatially varying
coefficient field c(x) = (𝑐1 (x), . . . , 𝑐𝐾 (x))⊤ with 𝑐𝑘 : R𝐷 → R
and (ii) transforming the coordinates of the basis functions via
a coordinate transformation function 𝜸 : R𝐷 → R𝐵 . Note that
in general transformed coordinate dimension 𝐵 does not need to
match signal domain dimension 𝐷 , and hence the domain of the
basis functions also changes accordingly: 𝑏𝑘 : R𝐵 → R:

𝑠 (x) = c(x)⊤b
(
𝜸 (x)

)
(2)

When choosing 𝜸 to be a periodic function, this formulation allows
us to apply the same basis at multiple spatial locations and optionally
also at multiple scales while varying the coefficients c, as illustrated
in Section 3.2 and Fig. 2 (a). Standard approaches with patch-wise
basis (e.g., [Tang et al. 2018]) can be viewed as a special case of
Eq. (2) when the coefficient field is piecewise-constant. However,
the linear representation significantly limited the model’s capability
and many have more than a single dimension (e.g., 3 in the case of
RGB images or 4 in the case of radiance fields).

We further generalize our model to𝑄-dimensional signals s(x) by
introducing a projection function P : R𝐾 → R𝑄 and replacing the
inner product with the element-wise/Hadamard product (denoted
by ◦ in the following):

ŝ(x) = P
(
c(x) ◦ b

(
𝜸 (x)

) )
(3)

We refer to Eq. (3) asDictionary Fields (DiF). Note that in contrast
to the scalar product c⊤b in Eq. (2), the output of c ◦ b is a 𝐾-
dimensional vector which comprises the individual coefficient-basis
products as input to the projection function P which itself can be
either linear or non-linear. In the linear case, we have P(x) = Ax
with A ∈ R𝑄×𝐾 . Moreover, note that for 𝑄 = 1 and A = (1, . . . , 1)
we recover Eq. (2) as a special case. In our experiments, we use a
shallow Multi-Layer Perceptron (MLP) to model P(x).

In our formulation,𝜸 is a deterministic functions while P, c and b
are parametric mappings (e.g., polynomials, multi-layer perceptrons
or 3D feature grids) whose parameters (collectively named \ below)
are optimized. Note that the parameters \ can be optimized either for
a single signal or jointly for multiple signals. When optimizing for
multiple signals jointly, we share the parameters of the projection
function and basis field b (but not the parameters of the coefficient
field c) across signals. The projection operator P can also be utilized
to model the volumetric rendering operation when reconstructing
a 3D radiance field from 2D image observations, see Section 3.3.
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(1) Sawtooth (2) Triangular (3) Sinusoidal

(4) Hashing (5) Orthogonal-1D (6) Orthogonal-2D

Fig. 3. Coordinate Transformations. We show various periodic (top) and
non-periodic (bottom) coordinate transformations𝜸 used in our framework.

3.1 Field Representations c and b
For modeling the coefficient field c and the basis field b, we consider
various different representations as illustrated in Fig. 1 (bottom-left).
MLPs have been proposed as signal representations in Occupancy
Networks [Mescheder et al. 2019], DeepSDF [Park et al. 2019] and
NeRF [Mildenhall et al. 2020]. While MLPs excel in compactness and
induce a useful smoothness bias, they are slow to evaluate and hence
increase training and inference time. To address this, DVGO [Sun
et al. 2022] proposes a 3D voxel grid representation for radiance
fields. While voxel grids are fast to optimize, they increase memory
significantly and do not easily scale to higher dimensions. To better
capture the sparsity in the signal, Instant-NGP [Müller et al. 2022]
proposes a hash function in combination with 1D feature vectors
instead of a dense voxel grid. Our work allows any of the above
representations to model the coefficients and bases. We analyze and
compare various combinations in our experiments, considering the
dense grid as the default setting of our DiF model.

3.2 Coordinate Transformation 𝜸
The coordinates input to the basis field b are transformed by a
coordinate transformation function 𝜸 : R𝐷 → R𝐵 .

Local Basis. The coordinate transformation 𝜸 enables the applica-
tion of the same basis function b at multiple locations as illustrated
in Fig. 2. In this paper, we consider sawtooth, triangular, sinusoidal
(as in NeRF [Mildenhall et al. 2020]) and hashing (as in Instant-NGP
[Müller et al. 2022]) transformations, see Fig. 3.

Multi-scale Basis. The coordinate transformation𝜸 also allows for
applying the same basis b atmultiple spatial resolutions of the signal
by transforming the coordinates x with (periodic) transformations
of different frequencies as illustrated in Fig. 2. This is crucial as
signals typically carry both high and low frequencies, and we seek
to exploit our basis representation across the full spectrum to model
fine details of the signal as well as smooth signal components.
Specifically, we model the target signal with a set of multi-scale

basis functions. We arrange the basis into 𝐿 levels where each level
covers a different scale. Let [u, v] denote the bounding box of the
signal along on dimension. The corresponding scale is given by
(v − u)/𝑓𝑙 where 𝑓𝑙 is the frequency at level 𝑙 . A large scale basis

(e.g., level 1) has a low frequency and covers a large region of the
target signal while a small scale basis (e.g., level 𝐿) has a large
frequency 𝑓𝐿 covering a small region of the target signal.

We implement our multi-scale representation (PR) by multiplying
the scene coordinate x with the level frequency 𝑓𝑙 before feeding it
to the coordinate transformation function𝜸 and then concatenating
the results across the different levels 𝑙 = 1, . . . , 𝐿:

𝜸PR (x) =
(
𝜸 (x 𝑓1), . . . ,𝜸 (x 𝑓𝐿)

)
(4)

Here,𝜸 is any of the coordinate transformations in Fig. 3, and𝜸PR is
the final coordinate transform of our multi-scale representation. As
shown in Fig. 2 (b), this results in the target signal being decomposed
as the product of spatial varying coefficient maps and multi-level
basis maps which comprise repeated local basis functions.

3.3 Projection P
To represent multi-dimensional signals, we introduced a projec-
tion function P : R𝐾 → R𝑄 that maps from the 𝐾-dimensional
Hadamard product c ◦ b to the 𝑄-dimensional target signal. We
distinguish two cases in our framework: the case where direct ob-
servations from the target signal are available (e.g., pixels of an RGB
image) and the indirect case where observations are projections of
the target signal (e.g., pixels rendered from a radiance field).

Direct Observations. In the simplest case, the projection function
realizes a learnable linear mapping P(x) = Ax with parameters
A ∈ R𝑄×𝐾 to map the 𝐾-dimensional Hadamard product c◦b to the
𝑄-dimensional signal. However, a more flexible model is attained
if P is represented by a shallow non-linear multi-layer perceptron
(MLP) which is the default setting in all of our experiments.

Indirect Observations. In some cases, we only have access to in-
direct observations of the signal. For example, when optimizing
neural radiance fields, we typically only observe 2D images instead
of the 4D signal (density and radiance). In this case, we extend P to
also include the differentiable volumetric rendering process. More
concretely, we first apply a multi-layer perceptron to map the view
direction and the product features c ◦ b at a particular location to a
color value and a volume density. Next, we follow NeRF [Mildenhall
et al. 2020] and render RGB pixels using volumetric integration ,
see [Mildenhall et al. 2020] for details. Note that in this case, the
composition of the learned MLP and the volume rendering function
constitute the projection function P.

3.4 Space Contraction
We normalize the input coordinates x ∈ R𝐷 to [0, 1] before passing
them to the coordinate transformations 𝜸 (x) by applying a simple
space contraction function to x. We distinguish two settings:
For bounded signals with 𝐷-dimensional bounding box [u, v]

(where u, v ∈ R𝐷 ), we utilize a simple linear mapping to normalize
all coordinates to the range [0, 1]:

contract(x) = x − u
v − u

(5)
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For unbounded signals (e.g., an outdoor radiance field), we adopt
Mip-NeRF 360’s [Barron et al. 2022] space contraction function1:

contract(x) =
{
x ∥x∥2 ≤ 1(
2 − 1

∥x∥2

) (
x

∥x∥2

)
∥x∥2 > 1

(6)

3.5 Optimization
Given samples {(x, s(x))} from the signal, we minimize

argmin
\

Ex
[
∥s(x) − ŝ\ (x)∥2 + Ψ(\c)

]
(7)

where Ψ(\c) is a regularizer on the coefficients. We optimize this
objective using stochastic gradient descent.

Sparsity Regularization. While using the ℓ0 norm for sparse coef-
ficients is desirable, this leads to a difficult optimization problem.
Instead, we use a simpler strategy which we found to work sur-
prisingly well. We regularize our objective by randomly dropping
a subset of the 𝐾 features of our model by setting them to zero
with probability `. This forces the signal to be represented with
random combinations of features at every iteration, encouraging
sparsity and preventing co-adaptation of features. We implement
this dropout regularizer using a random binary vector m which we
multiply element-wise with the product field: m ◦ c ◦ b.

Initialization. During all our experiments, we initialize the basis
factors using the discrete cosine transform (DCT) basis functions,
while initializing the parameters of the coefficient factors and pro-
jection MLP randomly. We experimentally found this to improve
the quality of the solution.

Multiple Signals. When optimizing for multiple signals jointly,
we share the parameters of the projection function and basis fields
(but not the parameters of the coefficient fields) across signals. As
evidenced by our experiments in Section 4.3, sharing bases across
different signals while encouraging sparse coefficients improves
generalization and enables reconstruction from sparse observations.

4 EXPERIMENTS
We now present extensive evaluations of our Dictionary Field rep-
resentation. We first briefly discuss our implementation and hy-
perparameter configuration. We then compare the performance of
DiF with previously proposed representations on both per-signal
reconstruction (optimization) and across-signal generalization tasks.
At the end of this section, we examine the properties of our method
by varying the level number 𝐿, different types of transformation
function 𝜸 , field representation of the coefficient c and basis b, and
field connector ◦. In the following section, we denote the different
model variants of our DiF factorizations labeled "DiF-xx", where
"xx" indicates the differences from the default setting “DiF-Grid”. For
example, "DiF-MLP-B" refers to using an MLP basis representation,
and "DiF-Hash-B" stands for using a hash coordinate transformation
function for basis.

1In our implementation, we slightly modify Eq. (6) to map coordinates to a unit ball
centered at 0.5 which avoids negative coordinates when indexing feature grids.

4.1 Implementation
We implement our DiF using vanilla PyTorch without customized
CUDA kernels. Performance is evaluated on a single RTX 6000 GPU
using the Adam optimizer [Kingma and Ba 2015] with a learning
rate of 0.02.
We instantiate DiF using 𝐿 = 6 levels with frequencies (lin-

early increasing) 𝑓𝑙 ∈ [2., 3.2, 4.4, 5.6, 6.8, 8.], and feature channels
𝐾 = [4, 4, 4, 2, 2, 2]⊤ · 2[ , where [ controls the number of feature
channels. We use [ = 3 for our 2D experiments and [= 0 for our
3D experiments. The model parameters \ are distributed across 3
model components: coefficients \c, basis \b, and projection function
\P . The size of each component can vary greatly depending on the
chosen representation.

In the following experiments, we refer to the default model setting
as “DiF-Grid”, which implements the coefficients c and bases b with
learnable tensor grids, P(x) = MLP(x), and 𝜸 (x) = Sawtooth(x),
where Sawtooth(x) = x mod 1.0. In the DiF-Grid setting, the total
number of optimizable parameters is mainly determined by the
resolution of the coefficient𝑀𝑙c and basis grids𝑀𝑙b:

|\ | = |\P | + |\c | + |\b | = |\P | +
𝐿∑︁
𝑙=1

𝑀𝑙
c
𝐷 + 𝐾𝑙 ·𝑀𝑙

b
𝐷 (8)

We implement the basis grid using linearly increasing resolutions
𝑀𝑙
b ∈ [32, 128]𝑇 · 𝑚𝑖𝑛 (v−u)1024 with interval [32, 128] and scene bound-

ing box [𝑢, 𝑣]. This leads to increased resolution for modeling higher-
resolution signals in our experiments. We use the same coefficient
grid resolution 𝑀𝑙c across all 𝐿 levels for query efficiency and to
lower per-signal memory footprint.
We first evaluate the accuracy and efficiency of our DiF-Grid

representation on various multi-dimensional signals, comparing it
to several recent neural signal representations. Towards this goal,
we consider three popular benchmark tasks for evaluating neural
representations: 2D image regression, 3D Signed Distance Field
(SDF) reconstruction and Radiance Field Reconstruction / Novel
View Synthesis. We evaluate each method’s ability to approximate
high-frequency patterns, interpolation quality, compactness, and
robustness to ambiguities and sparse observations.

4.2 Single Signals
2D Image Regression. In this task, we directly regress RGB pixel

colors from pixel coordinates. We evaluate our DiF-Grid on fitting
four complex high-resolution images, where the total number of
pixels ranges from 4M to 213M. In Fig. 4, we show the reconstructed
images with the corresponding model size, optimization time, and
image PSNRs, and compare them to Instant-NGP [Müller et al. 2022],
a state-of-the-art neural representation that supports image regres-
sion and has shown superior quality over prior art including Fourier
Feature Networks [Tancik et al. 2020] and SIREN [Sitzmann et al.
2020]. Compared to Instant-NGP, our model consistently achieves
higher PSNR on all images when using the same model size, demon-
strating the superior accuracy and efficiency of our model. On the
other hand, while Instant-NGP achieves faster optimization owing
to its highly optimized CUDA-based framework, our model, imple-
mented in pure PyTorch, leads to comparably fast training while

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.



6 • Chen et al.

Summer Day Albert Pluto Girl with a Pearl Earring

6114×3734×3 (resolution) / 35.42M (params) 1024×1024×4 / 1.36M 8000×8000×3 / 58.60M 8000×9302×3 / 68.52M
0:46 vs. 4:13 (mm:ss) / 42.37 vs. 49.00 dB (PSNR) 0:30 vs. 1:13 / 50.98 vs. 62.69 dB 0:50 vs. 5:32 / 44.30 vs. 46.19 dB 1:05 vs. 6:06 / 37.44 vs. 38.91 dB

params (M)params (M)params (M)params (M)

PSNR (dB) PSNR (dB) PSNR (dB) PSNR (dB)

Fig. 4. 2D Image Regression. This figure shows images represented using our DiF-Grid model. The respective image resolutions and numbers of model
parameters are shown below each image. Moreover, we also report a comparison to Instant-NGP (first number) in terms of optimization time and PSNR
metrics (Instant-NGP vs Ours) at the bottom using the same number of model parameters. Note that our method achieves better reconstruction quality on all
images when using the same model size. While optimization is slower than Instant-NGP, we use a vanilla PyTorch implementation without customized CUDA
kernels. “Summer Day” credit goes to Johan Hendrik Weissenbruch and rijksmuseum. “Albert” credit goes to Orren Jack Turner. “Pluto” credit goes to NASA.
“Girl With a Pearl Earring” renovation ©Koorosh Orooj (CC BY-SA 4.0).

relying on a vanilla PyTorch implementation without custom CUDA
kernels which simplifies future extensions.

Signed-Distance Field Reconstruction. Signed Distance Function
(SDF), as a classic geometry representation, describes a set of con-
tinuous iso-surfaces, where a 3D surface is represented as the zero
level-set of the function. We evaluate our DiF-Grid on modeling
several challenging object SDFs that contain rich geometric details
and compare with previous state-of-the-art neural representations,
including Fourier Feature Networks [Tancik et al. 2020], SIREN [Sitz-
mann et al. 2020], and Instant-NGP [Müller et al. 2022]. To allow
for fair comparisons in terms of the training set and convergence,
we use the same training points for all methods by pre-sampling
8M SDF points from the target meshes for training, with 80% points
near the surface and the remaining 20% points uniformly distributed
inside the unit volume. Following the evaluation setting of Instant-
NGP, we randomly sample 16M points for evaluation and calculate
the geometric IOU metric based on the SDF sign.

𝑔𝐼𝑜𝑈 =

∑(𝑠 (X) > 0) ∩ (𝑠 (X) > 0)∑(𝑠 (X) > 0) ∪ (𝑠 (X) > 0) (9)

where X is the evaluation point set, 𝑠 (X) are the ground truth SDF
values, and 𝑠 (X) are the predicted SDF values.

Fig. 5 shows a quantitative and qualitative comparison of all
methods. Our method leads to visually better results, it recovers
high-frequency geometric details and contains less noise on smooth
surfaces (e.g., the elephant face). The high visual quality is also
reflected by the highest gIoU and Chamfer Distance (CD) value
of all methods. Meanwhile, our method also achieves the fastest

reconstruction speed, while using less than half of the number of
parameters used by CUDA-kernel enabled Instant-NGP, demonstrat-
ing the high accuracy, efficiency, and compactness of our factorized
representation.

Radiance Field Reconstruction. Radiance field reconstruction aims
to recover the 3D density and radiance of each volume point from
multi-view RGB images. The geometry and appearance properties
are updated via inverse volume rendering, as proposed in NeRF
[Mildenhall et al. 2020]. Recently, many encoding functions and
advanced representations have been proposed that significantly
improve reconstruction speed and quality, such as sparse voxel
grids [Fridovich-Keil et al. 2022], hash tables [Müller et al. 2022]
and tensor decomposition [Chen et al. 2022].
In Table 1, we quantitatively compare DiF-Grid with several

state-of-the-art fast radiance field reconstruction methods (Plenoxel
[Fridovich-Keil et al. 2022], DVGO [Sun et al. 2022], Instant-NGP
[Müller et al. 2022] and TensoRF-VM [Chen et al. 2022]) on both
synthetic [Mildenhall et al. 2020] as well as real Tanks and Temple
objects [Knapitsch et al. 2017]. Note that, we re-run Instant-NGP
with the official code, using the same input (RGB) and iterations
(30𝑘) setting for a fair comparison. Our method achieves high recon-
struction quality, significantly outperforming NeRF, Plenoxels, and
DVGO on both datasets, while being significantly more compact
than Plenoxels and DVGO. We also outperform Instant-NGP and
are on par with TensoRF regarding reconstruction quality, while
being highly compact with only 5.1M parameters, less than one-
third of TensoRF-VM and one-half of Instant-NGP. Our DiF-Grid
also optimizes faster than TensoRF, at slightly over 10 minutes, in
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DiF-Grid (ours) SIREN PE Instant-NGP DiF-Grid Reference DiF-Grid (ours)

Lucy Statuette

Armadillo Dragon1.0 1.0 11.6 5.10 model size (M)
36:53 29:22 0:41 0:31 speed (mm:ss)
2.414 1.561 1.442 1.395 CD (1𝑒 − 3)
0.9169 0.9663 0.9722 0.9795 gIoU

Fig. 5. Signed-Distance Field Reconstruction.We reconstruct SDFs from 8.0M training points. We show qualitative visual comparisons on the top and
quantitative comparisons on the bottom including the number of parameters, reconstruction time, gIoU, and chamfer distance (CD). DiF-Grid and Instant-NGP
[Müller et al. 2022] are trained for 10𝑘 iterations, while SIREN [Sitzmann et al. 2020] and NeRF with Frequency Position Encoding (PE) [Tancik et al. 2020] are
trained for 200𝑘 iterations.

Table 1. Novel View Synthesis with Radiance Fields. We compare our method to previous radiance field reconstruction methods on the Synthetic-NeRF
[Mildenhall et al. 2020] and Tanks and Temples [Knapitsch et al. 2017] datasets. We report the scores reported in the original papers whenever available. We
also show the average reconstruction time and model size for the Synthetic-NeRF dataset to compare the efficiency of the methods.

Synthetic-NeRF Tanks and Temples
Method BatchSize Steps Time ↓ Size (M)↓ PSNR↑ SSIM↑ PSNR↑ SSIM↑
NeRF [Mildenhall et al. 2020] 4096 300k ∼35h 01.25 31.01 0.947 25.78 0.864
Plenoxels [Fridovich-Keil et al. 2022] 5000 128k 11.4m 194.5 31.71 0.958 27.43 0.906
DVGO [Sun et al. 2022] 5000 30k 15.0m 153.0 31.95 0.957 28.41 0.911
Instant-NGP [Müller et al. 2022] 10k-85k 30k 03.9m 11.64 32.59 0.960 27.09 0.905
TensoRF-VM [Chen et al. 2022] 4096 30k 17.4m 17.95 33.14 0.963 28.56 0.920
DiF-Grid (Ours) 4096 30k 12.2m 05.10 33.14 0.961 29.00 0.938

addition to our superior compactness. Additionally, unlike Plenoxels
and Instant-NGP which rely on their own CUDA framework for
fast reconstruction, our implementation uses the standard PyTorch
framework, making it easily extendable to other tasks.

In general, our model leads to state-of-the-art results on all three
challenging benchmark tasks with both high accuracy and efficiency.
Note that the baselines are mostly single-factor, utilizing either a lo-
cal field with an identical coordinate transformation (such as DVGO
and Plenoxels), or a global field with a many-to-one coordinate
transformation (such as Instant-NGP). In contrast, our DiF model is
a two-factor method, incorporating both local coefficient and global
basis fields, hence resulting in better reconstruction quality and
memory efficiency.

4.3 Generalization
Recent advanced neural representations such as NeRF, SIREN, ACORN,
Plenoxels, Instant-NGP and TensoRF optimize each signal separately,
lacking the ability to model multiple signals jointly or learning use-
ful priors from multiple signals. In contrast, our DiF representation
not only enables accurate and efficient per-signal reconstruction
(as demonstrated in Section 4.2) but it can also be applied to gener-
alize across signals by simply sharing the basis field across signal
instances. We evaluate the benefits of basis sharing by conducting
experiments on image regression from partial pixel observations
and few-shot radiance field reconstruction. For these experiments,
instead of DiF-Grid, we adopt DiF-MLP-B (i.e., (5) in the Table 3)
as our DiF representation, where we utilize a tensor grid to model

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.
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Fig. 6. Radiance Field Reconstruction. We evaluate our DiF using NeRF-
Synthetic and Tanks and Temples datasets, our method is able to reconstruct
high-quality surface details.

the coefficient and 6 tiny MLPs (two layers with 32 neurons each)
to model the basis. We find that DiF-MLP-B performs better than
DiF-Grid in the generalization setting, owing to the strong inductive
smoothness bias of MLPs.

Image Regression from Sparse Observations. Unlike the image re-
gression experiments conducted in Sec. 4.2 which use all image
pixels as observations during optimization, this experiment focuses
on the scenario where only part of the pixels are used during op-
timization. Without additional priors, a single-signal optimization
easily overfits in this setting due to the sparse observations and the
limited inductive bias, hence failing to recover the unseen pixels.

We use our DiF-MLP-B model to learn data priors by pre-training
it on 800 facial images from the FFHQ dataset [Karras et al. 2018]
while sharing the MLP basis and projection function parameters.
The final image reconstruction task is conducted by optimizing the
coefficient grids for each new test image.

In Fig. 7, we show the image regression results on three different
facial images with various masks and compare them to baseline
methods that do not use any data priors, including Instant-NGP and
our DiF-MLP-B without pre-training. As expected, Instant-NGP can
accurately approximate the training pixels but results in random
noise in the untrained mask regions. Interestingly, even without
pre-training and priors from other images, our DiF-MLP-B is able to
capture structural information to some extent within the same image
being optimized; as shown in the eye region, the model can learn
the pupil shape from the right eye and regress the left eye (masked
during training) by reusing the learned structures in the shared
basis functions. As shown on the right of Fig. 7, our DiF-MLP-B with
pre-trained prior clearly achieves the best reconstruction quality
with better structures and boundary smoothness compared to the
baselines, demonstrating that our factorized DiF model allows for
learning and transferring useful prior information from the training
set.

Few-Shot Radiance Field Reconstruction. Reconstructing radiance
fields from few-shot input images with sparse viewpoints is highly
challenging. Previous works address this by imposing sparsity as-
sumptions [Kim et al. 2022; Niemeyer et al. 2022] in per-scene op-
timization or training feed-forward networks [Chen et al. 2021b;
Kulhanek et al. 2022; Yu et al. 2021] from datasets. Here we consider

3 and 5 input views per scene and seek a novel solution that lever-
ages data priors in pre-trained basis fields of our DiF model during
the optimization task. It is worth-noting that the views are chosen
in a quarter sphere, thus the overlapping region between views is
quite limited.

Specifically, we first train DiF models on 100 Google Scanned Ob-
ject scenes [Downs et al. 2022], which contains 250 views per scene.
During cross-scene training, we maintain 100 per-scene coefficients
and share the basis b and projection function P. After cross-scene
training, we use themean coefficient values of pre-trained coefficient
fields as the initialization, while fixing the pre-trained functions (b
and P) and fine-tuning the coefficient field for new scenes with few-
shot observations. In this experiment, we compare results from both
DiF-MLP-B and DiF-Grid with and without the pre-training. We
also compare with Instant-NGP and previous few-shot reconstruc-
tion methods, including PixelNeRF [Yu et al. 2021] and MVSNeRF
[Chen et al. 2021b], re-train with the same training set and test
using the same 3 or 5 views. As shown in Table 2 and Fig. 8, our
pre-trained DiF representation with MLP basis provides strong reg-
ularization for few-shot reconstruction, resulting in fewer artifacts
and better reconstruction quality than the single-scene optimization
methods without data priors and previous few-shot reconstruction
methods that also use pre-trained networks. In particular, without
any data priors, single-scene optimization methods (Instant-NGP
and ours w/o prior) lead to a lot of outliers due to overfitting to
the few-shot input images. Previous methods like MVSNeRF and
PixelNeRF achieve plausible reconstructions due to their learned
feed-forward prediction which avoids per-scene optimization. How-
ever, they suffer from blurry artifacts. Additionally, the strategy
taken by PixelNeRF and MVSNeRF assumes a narrow baseline and
learns correspondences across views for generalization via feature
averaging or cost volume modeling which does not work as effec-
tively in a wide baseline setup. On the other hand, by pre-training
shared basis fields on multiple signals, our DiF model can learn
useful data priors, enabling the reconstruction of novel signals from
sparse observations via optimization.

4.4 Influence of Design Choices in DiF
In this section, we aim to analyze the properties of these variations
and offer a comprehensive understanding of the components of the
proposed representation. We conduct extensive evaluations on the
four main components of our Dictionary Fields: level number 𝐿,
coordinate transformation function 𝜸 , field representation c and b,
and field connector ◦.
We present a comprehensive assessment of the representations’

capabilities in terms of efficiency, compactness, reconstruction qual-
ity, as well as generalizability, with a range of tasks including 2D
image regression (with all pixels), and per-scene and across-scene
3D radiance field reconstruction. Note that, the settings in per-scene
and across-scene radiance field reconstruction are the same as in-
troduced in Section 4.2 and Section 4.3, while for the 2D image
regression task, we use the same model setting as in Section 4.2 and
test on 256 high fidelity images at a resolution of 1024 × 1024 from
the DIV2K dataset [Agustsson and Timofte 2017]. To enable mean-
ingful comparisons, we evaluate the variations within the same

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.
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Input SIREN Positional Encoding Instant-NGP DiF-MLP-B DiF-MLP-B∗

Fig. 7. Image Regression from Sparse Observations. Results obtained by fitting each model to all unmasked pixels. We use randomly placed black squares
as masks for the bottom two rows and an image of text and small icons as mask for the top row. The symbol ∗ denotes pre-training of the basis factors using
the FFHQ facial image set. Our pre-trained model (DiF-MLP-B∗) learns robust basis fields which lead to better reconstruction compared to the per-scene
baselines Instant-NGP and DiF-MLP-B. Images ©FFHQ Dataset (CC BY-SA 4.0).

M
VS

N
eR

F
Pi
xe
lN
eR

F
iN
GP

w
/o

pr
io
r

w
/p

rio
r

GT

Fig. 8. Radiance Fields from 5 Views. We visualize novel view synthesis
results of six test scenes, corresponding to the quantitative results in Table 2.
We show our DiF-MLP-B model w/ and w/o pre-trained data priors (bottom
two rows) and compare it to Instant-NGP, PixelNeRF and MVSNeRF (top
three rows). Our model with pre-trained basis factors can effectively utilize
the learned data priors, resulting in superior qualitative results with fewer
outliers compared to single-scene models (iNGP and ours w/o priors), as
well as sharper details compared to feed-forward models (PixelNeRF and
MVSNeRF).

code base and report their performance using the same number of
iterations number, batch size, training point sampling strategy and

Table 2. Few-shot Radiance FieldReconstruction.We show quantitative
comparisons of few-shot radiance field reconstruction from 3 or 5 viewpoints
regarding optimization time and novel view synthesis quality (PSNRs and
SSIMs). Results are averaged across 10 test scenes. The results of Instant-
NGP and our DiF models are generated based on per-scene optimization,
while DiF models with ∗ use pre-trained basis factors across scenes. We
train the feed-forward networks of PixelNeRF and MVSNeRF using the
same dataset we learn our shared basis factors, and the results of PixelNeRF
and MVSNeRF are generated from the networks via direct feed-forward
inference. We also fine-tuned the trained models with another 10𝑘 iterations
using the input source views, labeled with "-ft". Our DiF-MLP-B∗ with pre-
trained MLP basis factors leads to the best reconstruction quality.

3 views 5 views
Method Time↓ PSNR↑ SSIM↑ PSNR↑ SSIM↑
iNGP 03:38 14.74 0.776 20.79 0.860
DiF-Grid 13:39 18.13 0.805 20.83 0.847
DiF-MLP-B 18:24 16.31 0.804 22.26 0.900
PixelNeRF 00:00 21.37 0.878 22.73 0.896
MVSNeRF 00:00 20.50 0.868 22.76 0.891
PixelNeRF-ft 25:18 22.21 0.882 23.67 0.895
MVSNeRF-ft 13:06 18.51 0.864 20.49 0.887
DiF-Grid∗ 13:18 20.77 0.871 25.41 0.915
DiF-MLP-B∗ 18:44 21.96 0.891 26.91 0.927

pyramid frequencies. Correspondingly, the results for Instant-NGP,
EG3D, OccNet, NeRF, DVGO, TensoRF-VM/-CP are based on our
reimplementation of the original methods in our Dictionary Fields
with the corresponding design parameters shown in the tables.

Field Representation c and b. In Table 3, we compare various func-
tions for representing the factors in our framework (especially our
DiF model) including MLPs, Vectors, 2D Maps and 3D Grids, encom-
passing most previous representations. Note that discrete feature
grid functions (3D Grids, 2D Maps, and Vectors) generally lead to
faster reconstruction than MLP functions (e.g. DiF-Grid is faster

ACM Trans. Graph., Vol. 42, No. 4, Article . Publication date: August 2023.
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Table 3. Design Study on Field Representations c and b.

Design Performance (PSNR/SSIM)
Name N Representations 𝜸 Time (mm:ss) Size (M) 2D Images RF Few-shot RF

(1) TensoRF-VM∗ 2 2D Maps; Vectors Orthog1,2𝐷 (x) - /16:20/13:06 - /4.55/4.93 - / - 30.47/0.940 26.79/0.908
(2) DiF-Grid 2 3D Grids; 3D Grids Sawtooth(x) 01:13/12:10/11:35 0.99/5.10/7.32 39.51/0.963 33.14/0.961 25.41/0.915
(3) DiF-DCT 2 3D Grids; 3D Grids Sawtooth(x) 00:53/ - / - 0.18/ - / - 23.16/0.606 - / - - / -
(4) DiF-Hash-B 2 Vectors; 3D Grids Hashing(x) 00:55/13:10/10.15 1.09/4.37/3.28 37.53/0.949 32.80/0.960 26.53/0.924
(5) DiF-MLP-B 2 MLP; 3D Grids Sawtooth(x) 01:24/18:18/18:23 0.18/0.62/2.53 28.76/0.819 29.62/0.932 26.91/0.927
(6) DiF-MLP-C 2 3D Grid; MLP Sawtooth(x) 01:13/13:38/08:23 0.87/4.54/4.86 34.72/0.910 32.57/0.956 23.54/0.875
(7) TensoRF-CP∗ 3 Vectors×3 Orthog1𝐷 (x) 00:43/28:05/12:42 0.39/0.29/0.29 33.79/0.899 31.14/0.944 22.62/0.867

Table 4. Design Study onCoordinate Transformations𝜸 , scores are reported
in (PSNR/SSIM).

𝜸𝑖 (x) 2D Images RF Few-shot RF
(1) Hashing(x) 37.53/0.949 32.80/0.960 26.62/0.919
(2) Sinusoidal(x) 38.21/0.953 32.85/0.961 25.43/0.908
(3) Triangular(x) 39.38/0.962 32.95/0.960 24.78/0.904
(4) Sawtooth(x) 39.51/0.963 33.14/0.961 25.41/0.915

than DiF-MLP-B and DiF-MLP-C). While all variants can lead to
reasonable reconstruction quality for single-signal optimization, our
DiF-Grid representation that uses grids for both factors achieves
the best performance on the image regression and single-scene ra-
diance field reconstruction tasks. On the other hand, the task of
few-shot radiance field reconstruction benefits from basis functions
that impose stronger regularization. Therefore, representations with
stronger inductive biases (e.g., the Vectors in TensoRF-VM andMLPs
in DiF-MLP-B) lead to better reconstruction quality compared to
other variants.

Coordinate Transformation 𝜸 . In Table 4, we evaluate four coordi-
nate transformation functions using our DiF representation. These
transformation functions include sinusoidal, triangular, hashing
and sawtooth. Their transformation curves are shown in Fig. 3. In
general, in contrast to the random hashing function, the periodic
transformation functions (2, 3, 4) allow for spatially coherent in-
formation sharing through repeated patterns, where neighboring
points can share spatially adjacent features in the basis fields, hence
preserving local connectivity. We observe that the periodic basis
achieves clearly better performance in modeling dense signals (e.g.,
2D images). For sparse signals such as 3D radiance fields, all four
transformation functions achieve high reconstruction quality on
par with previous state-of-the-art fast radiance field reconstruction
approaches [Chen et al. 2022; Müller et al. 2022; Sun et al. 2022].

Level Number 𝐿. Our DiF model adopts multiple levels of trans-
formations to achieve pyramid basis fields, similar to the usage of
a set of sinusoidal positional encoding functions in NeRF [Milden-
hall et al. 2020]. We compare multi-level models (including DiF
and NeRF) with their reduced single-level versions that only use
a single transformation level in Table 5. Note that Occupancy Net-
works (OccNet, row (1)) do not leverage positional encodings and
can be seen as a single-level version of NeRF (row (2)) while the
model with multi-level sinusoidal encoding functions (NeRF) leads

Table 5. Design Study on Levels Number 𝐿, scores are reported in
(PSNR/SSIM).

Name L 2D Images RF Few-shot RF
(1) OccNet∗ 1 13.90/0.437 20.60/0.849 - / -
(2) NeRF∗ 10 28.99/0.816 27.81/0.919 - / -
(3) DiF-Hash-B 1 30.97/0.891 31.11/0.941 24.13/0.881
(4) DiF-Hash-B 6 37.53/0.949 32.80/0.960 26.62/0.919
(5) DiF-Grid 1 38.73/0.973 31.08/0.942 23.88/0.882
(6) DiF-Grid 6 39.51/0.963 33.14/0.961 25.41/0.915

Table 6. Quantify comparison on element-wise product ◦ vs. concatenation
⊕, scores are reported in (PSNR/SSIM).

Name 2D Images RF Few-shot RF

(1) TensoRF-CP ◦ 33.79/0.899 31.14/0.944 23.19/0.879
⊕ 25.67/0.683 26.75/0.905 21.43/0.856

(2) TensoRF-VM ◦ - / - 30.47/0.940 26.99/0.911
⊕ - / - 29.86/0.939 24.67/0.885

(3) DiF-Grid ◦ 39.51/0.963 33.14/0.961 25.41/0.915
⊕ 37.76/0.946 32.95/0.960 24.71/0.894

to about 10dB PSNR performance boost for both 2D image and 3D
reconstruction tasks. On the other hand, the single-level DiF mod-
els are also consistently worse than the corresponding multi-level
models in terms of speed and reconstruction quality, despite the
performance drops being not as severe as those in purely MLP-based
representations.

Field Connector ◦. Another key design choice of our DiF model
is to adopt the element-wise product to connect multiple factors.
Directly concatenating features from different components is an
alternative choice and exercised in several previous works [Chan
et al. 2022; Mildenhall et al. 2020; Müller et al. 2022]. In Table 6,
we compare the performance of the element-wised product against
the direct concatenation in three model variants. Note that the
element-wise product consistently outperforms the concatenation
operation in terms of reconstruction quality for all models on all
applications, demonstrating the effectiveness of using the proposed
product-based factorization.
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5 CONCLUSION
In this work, we present a novel signal representation – Dictionary
Fields (DiF) – that factorizes a signal as a product of localized coeffi-
cient field and a global basis field with periodic transformations. We
extensively evaluate our DiF model on three signal reconstruction
tasks including 2D image regression, 3D SDF reconstruction, and
radiance field reconstruction. We demonstrate that our DiF model
leads to state-of-the-art reconstruction quality, better or on par with
previous methods on all three tasks, while achieving faster recon-
struction and more compact model sizes than most methods. Our
DiF model is able to generalize across scenes by learning shared
basis field factors from multiple signals, allowing us to reconstruct
new signals from sparse observations. We show that, using such
pre-trained basis factors, our method enables high-quality few-shot
radiance field reconstruction from only 3 or 5 views, outperforming
previous methods like PixelNeRF and MVSNeRF in the sparse view
/ wide baseline setting.

Limitations. Currently, our learned coefficient and basis fields are
unconstrained and hence not easily interpretable. We imagine that
enforcing sparsity more explicitly will lead to more interpretable
basis patterns and consider this as interesting future work.
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